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To descend into the stability domain, the standard ALGOL program for searching for 
the extremum of a function of five arguments by the gradient method was used. The 
penalty function (1.10). depending on the Hurwitz inequalities, was minimized by the 
discrete algorithm in the program. 

The lower bound Ci ,min = 0.0002, was imposed on the control parameters since they 
should not be negative. The factor @ to accelerate the computations was taken equal 
to @ = 10+is for values of Hkk < +i. 

The descent trajectory of the five control parameters of the automatic system and the 
stability domain were computed on the BESM-4 computer. The results of the computa- 

tion are shown in Fig.2. The values obtained for the control parameters are 

C, = 0.085614, Cz = 0.005035, c3 = 0.697956, cd = 0.0002, c, = 0.000367 (2.5) 

The penalty function is M = 5.99939. For these values of the control parameters the 

characteristic polynomial is a Hurwitz polynomial; its roots are 

lrg = -0.0064, h, = -0.001569 (2.6) 

ha,3 = -0.037662 + i 0.790725, h?,i = -0.000085 + i 0.014039 
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The criterion of existence of a periodic solution of the Liknard equation 

5” + f (z) 5’ + g (2) = 0 

is established. Definite constraints are imposed on the functions f (z) and g (I) , but only 

for a certain, sufficiently widerange of the values of 2, containing the coordinate origin. 

Let us replace the given equation with an equivalent system given by 

dx / dt = y, dy / dt = -yf (5) - 6 b) (1) 

and introduce the notation 

F (4 = 5 f (4 dx, G (x) = i g (5) dx, Q (5) = “G (I) - ‘ia Xzxz2 + h 5 F (5) dr 

0 0 0 

p (x) = 2F (x) - hx, r (x) = 2C (x) + F2 (x) - hxF (I) i_ h‘s F (x) dx 
0 

where ?, is any positive real number for which the conditions of the theorem hold. 
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Theorem. Let f (5) and g (z) be such that the conditions of the theorem ,on the 
existence and uniqueness of the solution hold for the system (1) and 

1’. Function f (0) < 0. 

2’. Numbers a < b < 0 < c < d and h > 0 exist such that the functions g (2) 

and P (5) change their sign in the manner shown below 

g (5) < 0 when z E (a, 0), 

P (z) < 0 when 5 E b, b), 

P (x) < 0 when z E (0, c) 

3’. For z E [b, cl , 

g (4 > 0 when I E (0, d) 

p (x) > 0 when x E (b, 0) 

p (x) > 0 when 5 E (c, 4 

M=minCQ(4 Q(d)~>Q(~)+[1/---1p(z)g(=)+~/zIp(z)1]2 
Then the system (1) has at least one limit cycle. 

Proof. Consider the family of curves 

@ (4 .v) = Ya + p(z) y + r (2) = C (2) 

Solving it for y and taking into account the notation introduced above, we obtain 

y=- r/z P (4+ dC - ]r (4 - l/r p2 (41 = - 1/Z p (r) & I/C - Q (x) (3 

Since 

Q’ (4 = 2g (4 - ‘lzh2x + kF (4 = 2g (x) + ‘/& [2F (2) - h 51 = 2g (2) + ‘l&p (z) 

by Condition 2’ we have 

0’ (2) < 0 for z E (a, b), Q’ (2) > 0 for z E (c, 4 

i.e. Q (z) decreases monotonously in the interval (a, b) and increases monotonously in 

the interval (c, d). From z = b and z = c the inequality in Condition 3’ yields 

Q (a) > Q (b). Q (4 > Q (b), Q (u) > Q (c), Q (d) > Q (c) 
This means that the segments [Q (b), Q (a)] and [Q (c), Q (d)] of the y-axis intersect 

and the number M, the smallest of the numbers Q (a) and Q (d) , is the upper end of the 

segment common to both these segments. 

Let 
m = aup 19 (41 (b < 5 < c) 

Obviously m < M, otherwise Condition 3 ’ would not hold. From the definition of m 

and M it follows that the segment [m, M] is contained within the intersection of two 

segments IQ (b), Q (a)] and IQ (c), Q (41. 

Let C be a fixed number satisfying the inequality m < C < 191. Then the equation 

Q (z) = C has two roots tI and x2, in this case a < x1 < b and c < ~2 d d. 

Let Xl< 50 < x2. Then if x0 E (a, b) or x0 E (c, d), we have Q (x0) < C by virtue 
of the monotonous behavior of Q ( x) within these intervals. On the other hand, if 
IO E [b, c], we have Q (I,,) < C by virtue of the fact that C > m = sup {Q (5)) for 

b<x<C. 

In-any case, according to (3) there are two real values of y on (3) corresponding to 
each value of x = x0 when x1 < .zo < ‘~2, and one value of Y corresponding to each of 

the values x = x1 and t = x, . This means that a simple closed curve belonging to the 

family (2) and corresponding to the selected value of C E (m, MJ lies between two 

straight lines z = zI and x = xz . Since p (0) = 6 and Q (0) = 0, then by y (O)=fY’c 

and this implies that the curves of (2) enclose the coordinate origin. 
Equation (3) also implies directly that an increase in the value of C is accompanied 
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by an increase in the distance between the points of intersection of the curves with any 
straight line parallel to k-axis, i.e. if Cs > C,, the curve Qt (x, E/) = C, contains within 
itthecurve (P(~,c,)=C,~ 

Differentiation of (2) followed by simp~ficat~on yields, with (I) and the notation 
introduced above taken into account, 

d@ / dt = -)cy* -p (z)g (z) 

We shall show that da / dt < d on the curve @ (2, br) = iIf.- 
By 2’. the product P (x )g (x1 > 0 on the segments (a, b) and (c, d). ~omequently 

&I) I dt < 0 OR those parts of the curve, which lie within two strips, one bounded by the 
linesx==aandx= b,andtheotherby x--c and z-” d. 

We now find the sign of d@ I dt OR the upper arc & and the lower arc @s.of the curve 

$81 = - %P(x)i- 1/M--Q(x), YP=--~/&+- 6%6-Q(x) 

in the interval (b, c) . Condition 3” gives 

M - Of@>1 f-~-l~(z)i?tN +l/~I~(z)ll' when x~ lb, C] 

from which we have 
-‘hIr(x)i-f- 1/~+f--QW> 'vr---'p(z)g(z) 

Let b<x<O.Then p(x)>O, 

y1= - 'It I PWI + dJf - Q(z)> v"-- h-'p(x)g(xf, YI*>- k-lp(t)g(~) 

hence 
dQ, / dt = --hy”l - P (5) g (5) < 0 

Since p tx) > 0, we have 
-- 

‘fzP(2l-F V’Jf-Q(z)>--‘/s~(~)-l- fM--Q((z), or -ya>n 
consequently 

- Yz > v-- h-‘p (2) g (x), Y22 > - h-’ P +f g &) 

hence 
c&P I dt = - hYS2, - p (s) g (z) < 0 

In a similar manner we can show that cl@ / dt < 0 on the upper and the lower arc of 
the curve Q, (x, y) = M in the interval ‘(5, C), It follows that d4 I dt < 5 on the curve 
Q, (x, V) = M belonging to (2). 

Let us consider another family of curves 

cp (5, Y) = l/z Y2 + c (I) = c (4) 

We can easily see that this also represents a family of closed curves enclosing each 
other, containing the coordinate origin and such, that the value of d increases on the 
passage from the inner to the outer curves. 

Differentiating (4) we obtain, by (I), 
dg, / dt = --y2f (x) 

Since by Condition I” f (0) < 0 , dcp / dt & 0 on all curves of (4) corresponding to 
sufficiently small values of C. One of these &&es and the curve (I) (z, y) = M together 
yield an ammlar region into which all trajectories of system (11 are directed. As it con- 

tains no singular points, it must contain at least one stable limit cycle. 
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The complete dynamic equations of Prandtl-Reuss Cl] are examined in the rectangular 

region. An exact solution is given for a problem which corresponds to some specially 
selected boundary conditions and initial conditions. 

The obtained solution is used to evaluate the correctness of some assumptions which 
are applicable in the approximate solution of these equations @I. 

1. The equations of Prandtl-Reuss are used for the description of dynamic processes 
in such different media as metals and soils. These equations have the form 

Si3Sij = T (p), dsij/dt + h,~ij =2Geij (1.1) 
where 

,Vij = - ‘ij L; Pbij3 _ Pij = Cij - '/3&[[6jj, h = (ZCeij,yij - I/zdT/dt)iT 

Here cij and sij are tensors of stresses and velocities of deformation, p = ‘/sOii is the 
pressure, G is the shear modulus, the operator dJdt is an absolute derivative in the sense 

of p]. (It is assumed that the summation is carried out over recurring indices i. 1, k = 
=l, 2, 3. Compressive stresses are taken as positive.) 

The first of equations (1.1) is the plasticity condition of Mises. The function T (p) 
which enters into this condition is taken in the form T = :! (kp + (I)~ where k and 0 are 

constants. The particular form of T (p) was selected by us on the basis of mathematical 
convenience. However, experimental data for the soil [4] give just this type of relation- 

ship. 
The remaining equations (1.1) express the condition of coaxiality of stress tensors and 

velocity tensors of plastic deformations. The value of i; is selected such that the condi- 

tion of plasticity is a consequence of these equations. In this connection it is assumed 

that ;, > 6. If it turns out that ?, <._ U, then (1.1) should be replaced by the conventional 
equations of elasticity. 

The system of equations (1.1) must be closed by means of some relationship between 
the pressure and the density. This relationship can be quite complex. For example, it 
can contain hysteresis loops. 

SO far not a single fairly general solution of equations (1.1) is known. In the solution 
of specific problems, therefore, these equations are usually simplified. For example, in 


